Войти
Windows. Программы. Железо. Интернет. Безопасность. Мой компьютер
  • Как узнать, какая звуковая карта стоит на компьютере
  • Как восстановить сим карту МТС
  • Конструктор Arduino: новый взгляд сквозь SparkFun Pro Micro Arduino pro micro как работает
  • Ожидания и реалии в CRM-проектах Безапелляционный detail php id
  • Как узнать IMEI (серийный номер) iPhone?
  • Оптимизация OS X для продления жизни SSD
  • Территория электротехнической информации WEBSOR. Территория электротехнической информации WEBSOR Темы кодификатора ЕГЭ: электрическая ёмкость, конденсатор, энергия электрического поля конденсатора

    Территория электротехнической информации WEBSOR. Территория электротехнической информации WEBSOR Темы кодификатора ЕГЭ: электрическая ёмкость, конденсатор, энергия электрического поля конденсатора

    Как вам известно, вокруг заряженных тел существует электрическое поле, которое обладает энергией.

    А можно ли накапливать заряды и энергию электрического поля? Устройством, позволяющим накапливать заряды, является конденсатор (от лат. condensare - сгущение). Простейший плоский конденсатор состоит из двух одинаковых металлических пластин - обкладок, находящихся на небольшом расстоянии друг от друга и разделённых слоем диэлектрика, например воздуха (рис. 83). Толщина диэлектрика в сравнении с размерами обкладок небольшая.

    Рис. 83. Простейший конденсатор и его обозначение на схеме

    Продемонстрируем на опыте способность конденсатора накапливать заряды. Для этого две металлические пластины подключим к разным полюсам электрофорной машины (рис. 84). Пластины получат одинаковые по модулю, но разные по знаку заряды. Возникнет электрическое поле. Электрическое поле конденсатора практически сосредоточено между пластинами внутри конденсатора.

    Рис. 84. Зарядка конденсатора от электро-форной машины

    После отключения электрофорной машины заряды на пластинах и электрическое поле между ними сохранятся.

    Если обкладки заряженного конденсатора соединить проводником, то по проводнику некоторое время будет проходить ток. Значит, заряженный конденсатор является источником тока.

    В зависимости от диэлектрика конденсаторы бывают нескольких типов: с твёрдым, жидким и газообразным диэлектриком. Их различают и по форме обкладок: плоские, цилиндрические, сферические и др. (рис. 85).

    Рис. 85. Различные типы конденсаторов

    Свойство конденсатора накапливать электрические заряды характеризуется электроёмкостью , или ёмкостью. Для того чтобы понять, от чего зависит эта физическая величина, обратимся к опыту.

    Две металлические пластины, укреплённые на изолирующих подставках параллельно друг другу, соединим с электрометром. Одну из пластин соединим со стержнем электрометра, другую заземлим, соединив с корпусом прибора (рис. 86, а). Наэлектризованным шаром коснёмся внешней стороны пластины А, тем самым сообщив ей положительный заряд +q. Под действием электрического поля пластины А в пластине В произойдёт перераспределение зарядов: отрицательные заряды расположатся на внутренней стороне пластины. С земли придут свободные электроны, чтобы нейтрализовать положительные заряды на внешней стороне пластины В. Таким образом, на пластине В возникнет равный по величине отрицательный заряд -q.

    Рис. 86. Зависимость ёмкости конденсатора от площади, расстояния между пластинами, диэлектрика между пластинами

    Стрелка электрометра отклонится от нулевого положения. С помощью одинаково заряженных шаров продолжим передавать конденсатору заряды последовательно равными порциями. Мы заметим, что при увеличении заряда в 2, 3, 4 раза соответственно в 2, 3, 4 раза увеличатся показания электрометра, т. е. увеличится напряжение между пластинами конденсатора. Причём отношение заряда к напряжению будет оставаться постоянным:

      Величина, измеряемая отношением заряда одной из пластин конденсатора к напряжению между пластинами, называется электроёмкостью конденсатора .

    Электроёмкость конденсатора вычисляется по формуле:

    За единицу ёмкости в СИ принимается фарад (Ф), название дано в честь английского физика Майкла Фарадея. Электроёмкость конденсатора равна единице, если при сообщении ему заряда 1 Кл возникает напряжение 1В.

    1 Ф - это очень большая ёмкость, поэтому на практике используют микрофарад (мкФ) и пикофарад (пФ).

    1 мкФ = 10 -6 Ф; 1 пФ = 10 -12 Ф.

    Выясним, от чего зависит ёмкость кондесатора. Для этого возьмём конденсатор с пластинами, имеющими большую площадь (рис. 86, б). Повторим опыт. Отношение заряда к напряжению и в этом случае остаётся постоянным

    но отношение заряда к напряжению теперь больше, чем в первом опыте, т. е. С1 > С. Чем больше площадь пластин, тем больше ёмкость конденсатора .

    Ещё раз проделаем первый опыт, но теперь изменим расстояние между пластинами (рис. 86, в). С уменьшением расстояния между пластинами уменьшается напряжение между ними. При уменьшении расстояния между пластинами конденсатора при неизменном заряде ёмкость конденсатора увеличивается .

    Проделаем ещё один опыт. Установим пластины конденсатора А и В на некотором расстоянии друг от друга. Пластину А зарядим. Заметим показания электрометра, когда между пластинами находится воздух. Разместим между пластинами лист из оргстекла или другой диэлектрик (рис. 86, г). Мы заметим, что напряжение между пластинами уменьшится. Следовательно, ёмкость конденсатора зависит от свойств внесённого диэлектрика.

    При внесении диэлектрика ёмкость конденсатора увеличивается .

    Конденсатор, как и любое заряженное тело, обладает энергией. Проверим это на опыте. Зарядим конденсатор и подсоединим к нему электрическую лампочку. Лампочка ярко вспыхнет. Это свидетельствует о том, что заряженный конденсатор обладает энергией. Энергия конденсатора превращается во внутреннюю энергию нити накаливания лампы и проводов. Для того чтобы зарядить конденсатор, нужно было совершить работу по разделению положительных и отрицательных зарядов. В соответствии с законом сохранения энергии, совершённая работа А равна энергии конденсатора Е, т. е.

    где Е - энергия конденсатора.

    Работу, которую совершает электрическое поле конденсатора, можно найти по формуле:

    где Uср - это среднее значение напряжения.

    Поскольку в процессе разрядки напряжение не остаётся постоянным, необходимо найти среднее значение напряжения:

    Uср = U/2; тогда А = qU ср = qU/2,
    так как q = CU, то А = CU 2 /2.

    Значит, энергия конденсатора ёмкостью С будет равна:

    Конденсаторы могут длительное время накапливать энергию, а при разрядке они отдают её почти мгновенно. Свойство конденсатора накапливать и быстро отдавать электрическую энергию широко используется в электротехнических и электронных устройствах, в медицинской технике (рентгеновская техника, устройства электротерапии), при изготовлении дозиметров, аэрофотосъёмке.

    Вопросы

    1. Для чего служат конденсаторы?
    2. Что характеризует электроёмкость конденсатора?
    3. Что принято за единицу электроёмкости в СИ?
    4. От чего зависит электроёмкость конденсатора?

    Упражнение 38

    1. Пластины плоского конденсатора подсоединяют к источнику напряжения в 220 В. Ёмкость конденсатора равна 1,5 10 -4 мкФ. Чему будет равен заряд конденсатора?
    2. Заряд плоского конденсатора равен 2,7 10 -2 Кл, его ёмкость 0,01 мкФ. Найдите напряжение между обкладками конденсатора.

    Задание

    1. Используя Интернет, найдите, как был устроен первый конденсатор - лейденская банка. Изготовьте её.
    2. Подготовьте выступление об истории создания конденсатора.

    Две плоские пластины, расположенные параллельно друг другу и разделенные диэлектриком, составляют плоский конденсатор. Это самый простой представитель конденсаторов, которые предназначены для накопления разноименной энергии. Если пластинам сообщить заряд, равный по величине, но разный по модулю, то поля между проводниками увеличится вдвое. Отношение заряда одного из проводников к напряжению между пластинами конденсатора называют электроемкостью:

    Если расположение пластин будет неизменным, то можно считать константой при любом заряде проводников. В международной системе измерений единица электроемкости - Фарад (Ф). Плоский конденсатор имеет напряженность, равную сумме напряженностей, создаваемых проводниками (E 1 +E 2 ...+ E n ). Величины векторные. Значение электроемкости прямо пропорционально площади пластин и обратно пропорционально расстоянию между ними. Это значит, что, дабы увеличить электроемкость конденсатора, необходимо сделать площадь пластин больше, при этом уменьшив расстояние между ними. В зависимости от используемого диэлектрика, плоский конденсатор может быть:

    • Бумажным.
    • Слюдяным.
    • Полистирольным.
    • Керамическим.
    • Воздушным.

    Принцип устройства рассмотрим на примере бумажного конденсатора. Бумага, обработанная парафином, используется в данном случае в качестве диэлектрика. Прокладывается диэлектрик между двумя полосами фольги, которые выполняют роль проводников. Вся конструкция сворачивается в рулон, в который вставляются выводы для подключения к Данная модель помещается в керамический или металлический корпус. Плоский воздушный конденсатор и другие виды накопителей заряда представляют собой подобную конструкцию, только в качестве диэлектрической среды используются материалы, в честь которых назван сам конденсатор. При решении задач, в которых необходимо найти искомые величины, не забывайте использовать величину, характеризующую диэлектрик, - диэлектрическую проницаемость среды.

    В радиотехнике используются жидкие и сухие Жидкостные конденсаторы представляют собой в который помещена алюминиевая оксидированная пластина. Находится данная субстанция в металлическом корпусе. В качестве электролита используется раствор борной кислоты и некоторые другие смеси. Сухой вид накопителей выполнен посредством сворачивания трех лент, одна из которых алюминиевая, другая - металлическая, а между ними - марлевый слой, пропитанный вязким электролитом. Рулон помещен в алюминиевый корпус и залит битумом. Плоский конденсатор имеет широкую область применения и невысокую стоимость. К сожалению, данные модели не заменят нам аккумуляторных батарей, ведь энергия плоского конденсатора очень мала, и заряд очень быстро "утекает". Они не подходят в качестве источников электричества, но обладают одним преимуществом - при зарядке через цепь малого сопротивления мгновенно отдают накопленную энергию.

    Большое число конденсаторов, которые применяют в технике, приближены по типу к плоскому конденсатору. Это конденсатор, который представляет собой две параллельные проводящие плоскости (обкладки), которые разделяет небольшой промежуток, заполненный диэлектриком. На обкладках сосредоточены равные по модулю и противоположные по знаку заряды.

    Электрическая емкость плоского конденсатора

    Электрическая емкость плоского конденсатора очень просто выражается через параметры его частей. Изменяя площадь пластин конденсатора и расстояние между ними легко убедиться, что электрическая емкость плоского конденсатора прямо пропорциональна площади его пластин (S) и обратно пропорциональна расстоянию между ними (d):

    Формулу для расчета емкости плоского конденсатора просто получить при помощи теоретических расчетов.

    Положим, что расстояние между пластинами конденсатора много меньше, чем их линейные размеры. Тогда краевыми эффектами можно пренебречь, и электрическое поле между обкладками считать однородным. Поле (E), которое создают две бесконечные плоскости, несущие одинаковый по модулю и противоположный по знаку заряд, разделенные диэлектриком с диэлектрической проницаемостью , можно определить при помощи формулы:

    где — плотность распределения заряда по поверхности пластины. Разность потенциалов между рассматриваемыми обкладками конденсатора, находящимися на расстоянии d будет равна:

    Подставим правую часть выражения (3) вместо разности потенциалов в (1) учитывая, что , имеем:

    Энергия поля плоского конденсатора и сила взаимодействия его пластин

    Формула энергии поля плоского конденсатора записывается как:

    где - объем конденсатора; E - напряженность поля конденсатора. Формула (5) связывает энергию конденсатора с зарядом на его обкладках и напряженностью поля.

    Механическую (пондемоторную) силу, с которой пластины плоского конденсатора взаимодействуют между собой можно найти, если использовать формулу:

    В выражении (6) минус показывает, что пластины конденсатора притягиваются друг к другу.

    Примеры решения задач

    ПРИМЕР 1

    Задание Чему равно расстояние между пластинами плоского конденсатора, если при разности потенциалов В, заряд на пластине конденсатора равен Кл? Площадь пластин , диэлектриком в нем является слюда ().
    Решение Емкость конденсатора вычисляется при помощи формулы:

    Из этого выражения получим расстояние между пластинами:

    Емкость любого конденсатора определяет формула:

    где U - разность потенциалов между обкладками конденсатора. Подставим правую часть выражения (1.3) вместо емкости в формулу (1.2), имеем:

    Вычислим расстояние между обкладками ():

    Ответ м

    ПРИМЕР 2

    Задание Разность потенциалов между пластинами плоского воздушного конденсатора равна В. Площадь пластин равна , расстояние между ними м. Какова энергия конденсатора и чему она будет равна, если пластины раздвинуть до расстояния м. Учтите, что источник напряжения при раздвижении пластин не отключают.
    Решение Сделаем рисунок.


    Энергию электрического поля конденсатора можно найти при помощи выражения:

    Так как конденсатор плоский, то его электрическую емкость можно вычислить как:

    Details 21 January 2017

    Что вообще такое конденсатор? Конденсатор - это два проводника, разделённые слоем диэлектрика. При этом желательно, чтобы толщина слоя диэлектрика была меньше размеров пластин.

    Что, неужели вот прям так вот все просто? Неужели можно взять две металлические пластинки (чем не проводники?), расположить их рядом друг с другом (воздух чем не диэлектрик?) и будет прям-таки конденсатор? Да, это действительно так! Между двумя пластинками в воздухе будет некоторая емкость и в общем случае эта система попадает под определение конденсатора. Другое дело, насколько хороши параметры будут у такого самопального конденсатора... Впрочем, про параметры потом. Давайте сейчас разберемся, какие процессы происходят в конденсаторе при подсоединении его к источнику постоянного напряжения.

    Господа, прошу вас сейчас устремить ваше внимание на рисунок 1.


    Рисунок 1 - Процессы в конденсаторе

    Да, внешне выглядит как-то немного стремно, но сейчас все обсудим и станет понятнее. Итак, мы там видим две пластины конденсатора: красную и синюю. Красную пластину мы подключаем к плюсу источника постоянного напряжения, а синюю - к минусу. После этого мы включаем источник. Что при этом произойдет? В первый момент возникнет некоторый электрический ток: электрончики побегут от минуса источника по синему проводу. Бегут они бегут себе, добегают до синей пластины и тут бац - внезапно диэлектрик (который между обкладками конденсатора)! Что делать? А ничего не делать. Через диэлектрик им не пробраться. Для них это непреодолимая стена. Поэтому они начинают накапливаться на синей пластине. При этом растет отрицательный заряд -q синей пластины, обусловленный избытком электронов. Пусть они себе там копятся пока что, а мы пока рассмотрим, что же делается на красной пластине.

    Там происходят похожие процессы, только чуть наизнанку. На самом деле электрончики с нее начинают постепенно убегать и на красной пластине начинает формироваться некоторый положительный заряд +q, обусловленный дефицитом электронов. Они бегут с нее по красному проводу на плюс источника питания. И самое интересное то, что сколько электрончиков убежало с минуса источника через синий провод, ровно столько же возвратиться через красный провод на плюс источника (заряды +q и -q будут равны между собой). Еще раз! Сколько убежало с минуса источника, столько же придет на плюс источника. И это не смотря на то, что цепь фактически разомкнута: между обкладками конденсатора диэлектрик, который не проводит ток! Как же так выходит-то? Что бы хорошо это понять, рекомендую вам ознакомиться вот с этой моей статьей про электрическое поле . Здесь физика процесса похожая. Электроны, которые добегают до минуса и упираются в диэлектрик не могут бежать дальше, это да. Но они могут и создают электрическое поле, которое через этот слой диэлектрика воздействует на электроны на красной обкладке и как бы выталкивают их с нее дальше по проводу. Силовые линии этого поля показаны на рисунке 1 черными линиями. Таким образом, ток течек как в синем проводе, так и в красном и оба эти тока равны между собой. Что же касается электрического поля, то оно в основном оказывается сосредоточенным между обкладками конденсатора. В идеале оно вообще все внутри, но на деле, конечно, такого не получается.

    Но давайте снова вернемся к процессу накопления заряда на обкладках конденсатора. До какой поры ему там копиться? Не до бесконечности же? Конечно нет! Вспомним статью про напряжение. Чем больше у нас избыток электронов на синей обкладке конденсатора и чем болше их недостаток на красной, тем больше напряжение на конденсаторе. То есть одновременно с тем, как электроны накапливаются на одной обкладке конденсатора и убегают с другой, на конденсаторе растет напряжение. И этот процесс остановится тогда, когда напряжение на конденсаторе сравняется с напряжением на источнике питания. Вообще говоря, если подходить к вопросу формально, то напряжение на конденсаторе никогда не станет точно равным напряжению источника, оно будет бесконечно к нему стремиться, но все-таки всегда будет чуть-чуть меньше. Почему так - обсудим позднее. Сейчас скажу лишь что на практике практически всегда этим пренебрегают, считая, что конденсатор заряжается полностью до напряжения, равного напряжению питания. Итак, как только прибежит такое количество электронов, что напряжение на конденсаторе сравняется с напряжением источника питания, ток в цепи прекратится. Одновременно с этим прекратится дальнейший заряд конденсатора. Здесь опять же, уже в который раз, уместно привести аналогию с гидравликой. С водичкой, в общем. Представим себе, что к крану (аналог источника напряжения) подключен через шланг (аналог проводов) какой-либо резервуар. Подключение должно быть герметичным, иначе аналогия не будет верна. Мы открываем кран и водичка по шлангу побежит в резервуар и будет там скапливаться (аналогично электроны бегут к конденсатору и там образуется заряд). Вода прекратит течь ровно тогда, когда давление воды в резервуаре станет равным давлению воды в трубах (аналогично заряд конденсатора прекратится, когда напряжение на нем сравнится с напряжением источника). При перекрытии крана и отсоединении шланга вода, само собой, останется в резервуаре.

    И теперь самое интересное. Мы берем и отсоединяем конденсатор от источника питания. При этом избыток электронов на синей пластине по сравнению с красной пластиной сохранится. А это значит, что при отсоединении конденсатора от источника он сам, будет выдавать напряжение, до которого он зарядился! Он может работать как источник напряжения. То есть, если мы присоединим к его обкладкам какой-либо резистор, то через него потечет ток. Правда есть одно большое и важное отличие заряженного конденсатора от полноценного источника напряжения. При работе на нагрузку напряжение на конденсаторе будет падать, причем чем больше течет ток, тем быстрее будет происходить падение напряжения. Причина я думаю понятна - при протекании электрического тока электроны с синей обкладки будут возвращаться на красную до тех пор, пока заряд каждой из обкладок не станет равным нулю. Тогда ток прекратится. В отличии от полноценного источника напряжения здесь нет сторонних сил , за счет которых напряжение может поддерживаться на постоянном уровне.

    А вообще как долго может поддерживаться этот самый ток разрядки изолированного конденсатора? И от чего зависит количество накопленных электронов на обкладках? Разумно предположить, что это как-то должно зависеть от конфигурации конденсатора. Может быть от расстояния между пластинами? Или от их размера? Да и чем вообще характеризовать конденсатор? На все эти вопросы ответы есть. Конденсатор в первую очередь характеризуется электрической емкостью. Электрическая емкость - это отношение заряда конденсатора к напряжению на нем.

    Под зарядом q конденсатора здесь понимается заряд +q или -q любой из обкладок, поскольку они равны между собой.

    Измеряется емкость в Фарадах (Ф):

    Емкость в 1 Ф считается очень большой. Емкостями такого порядка обладает только особый тип конденсаторов - ионисторы . Обычно на практике конденсаторы имеют емкость от единиц пикофарад (10 -12) до единиц милифарад (10 -3).

    Вообще это определение емкости может показаться немного странным. Откуда нам взять заряд? Что еще за напряжение, чему оно, собственно, равно? Господа, фишка тут в том, что напряжение на конденсаторе прямо пропорционально накопленному в нем заряду :

    В принципе, это логично. Чем больше электронов скопилось на синей обкладке и чем больше убежало с красной, тем больше будет напряжение. А вот какова именно эта зависимость, какой на деле коэффициент пропорциональности между зарядом и напряжением - это уже определяется самим устройством конденсатора , то есть его емкостью.

    Нетерпеливый читатель сейчас вполне может сказать что-то вроде «Ну да, да, все замечательно, я понял, что заряд прямо пропорционален напруге. Но вот я уже взял два куска фольги с кухни, проложил между ними целлофановый пакет и мне не терпится узнать, какую я получил емкость? Мне что, предлагается зарядить это добро от батарейки до какого-то напряжения и потом каким-то неведомым образом считать число переизбытка электронов на минусовом куске фольги? » Нет, конечно, нет, господа. Никакие электроны мы не будем пересчитывать, еще не хватало. Приведенная нами формула - это лишь формальное определение емкости, тем не менее иногда оно будет нам полезно. Саму же емкость считаем по другой формуле. Она весьма проста и с вашего позволения я не буду приводить ее вывод. Итак, формула для расчета емкости вот такого вот плоского конденсатора выглядит следующим образом

    где

    С - наша емкость, которую мы ищем;

    ε - диэлектрическая проницаемость диэлектрика. Того самого, которые между двумя пластинами. Про нее мы упоминали вот в этой статье. Тем, кто пропустил, напоминаю - величина табличная, для каждого материала своя. Если нужна для какого-либо вашего материала - гугл в помощь;

    ε 0 = 8,85·10 -12 - электрическая постоянная. Что сие такое мы кратко рассмотрели . Если лень углубляться, но надо посчитать емкость - просто берите ее равной 8,85·10 -12 и все ;

    S - площадь пластины конденсатора. Любой на выбор - синей или красной, полагается, что они одинаковые;

    d - расстояние между пластинами конденсатора.

    Если мы подставим площадь в квадратных метрах, а расстояние между пластинами просто в метрах, то получим емкость в фарадах. Теперь зная конфигурацию вашего конденсатора вы легко сможете рассчитать его емкость.

    В моей инженерной практике приходилось самому проектировать подобного рода конденсаторы и сейчас я расскажу про этот процесс. Для работы узла одного устройства надо было организовать конденсатор емкостью примерно в 1 пФ, рассчитанный на напряжение порядка 300 В. Необходимо было обеспечить минимально возможные габариты и по возможности не использовать буржуйскую элементную базу. Поэтому было принято решение сделать такой конденсатор на печатной плате. Взгляните на рисунок 2.


    Рисунок 2 - Самодельный конденсатор

    В качестве диэлектрика конденсатора здесь выступает, собственно, само основание печатной платы. Оно у меня было из стеклотекстолита марки FR-4 с диэлектрической проницаемостью ε = 4,5. Толщина стеклотекстолита была 1,5 мм. В качестве обкладок конденсатора - площадки из медной фольги, расположенные одна над другой. Итак, у нас задана емкость, расстояние между обкладками конденсатора и диэлектрическая проницаемость диэлектрника. Остается рассчитать площадь медных полигонов, которые нам надо будет заложить в нашу печатную плату. Для этого просто выражаем S из нашей формулы для емкости и подставляем циферки.

    То есть в качестве обкладок конденсатора могут выступать медные полигоны квадратной формы с размерами сторон

    Вполне себе адекватные размеры, которые не сложно организовать. Хочу отметить, что устройство с такими вот самодельными конденсаторами было изготовлено и вполне себе успешно работает до сих пор.

    В заключении хотелось бы сказать, что при проектировании вот таких вот самодельных конденсаторов следует иметь ввиду, что такой подход позволяет получить конденсаторы с весьма примерными и относительно нестабильными параметрами. Дело в том, что диэлектрическая проницаемость стеклотекстолита величина не постоянная от партии к партии и может претерпевать изменения в диапазоне температур. В моем применении величина этой емкости была некритичной величиной, она могла изменяться на десятки процентов в процессе работы без серьезных последствий для изделия. Если же требуется большая точность и стабильность конденсатора, безусловно, следует отдать предпочтение конденсаторам промышленного производства с качественным диэлектриком.

    На этом мы заканчиваем первую статью про конденсаторы. Продолжение следует. Всем вам огромной удачи, и пока!

    Вступайте в нашу

    Во всех радиотехнических и электронных устройствах кроме транзисторов и микросхем применяются конденсаторы. В одних схемах их больше, в других меньше, но совсем без конденсаторов не бывает практически ни одной электронной схемы.

    При этом конденсаторы могут выполнять в устройствах самые разные задачи. Прежде всего, это емкости в фильтрах выпрямителей и стабилизаторов. С помощью конденсаторов передается сигнал между усилительными каскадами, строятся фильтры низких и высоких частот, задаются временные интервалы в выдержках времени и подбирается частота колебаний в различных генераторах.

    Свою родословную конденсаторы ведут от , которую в середине XVIII века в своих опытах использовал голландский ученый Питер ван Мушенбрук. Жил он в городе Лейдене, так что нетрудно догадаться, почему так называлась эта банка.

    Собственно это и была обыкновенная стеклянная банка, выложенная внутри и снаружи оловянной фольгой - станиолем. Использовалась она в тех же целях, как и современная алюминиевая, но тогда алюминий открыт еще не был.

    Единственным источником электричества в те времена была электрофорная машина, способная развивать напряжение до нескольких сотен киловольт. Вот от нее и заряжали лейденскую банку. В учебниках физики описан случай, когда Мушенбрук разрядил свою банку через цепь из десяти гвардейцев взявшихся за руки.

    В то время никто не знал, что последствия могут быть трагическими. Удар получился достаточно чувствительным, но не смертельным. До этого не дошло, ведь емкость лейденской банки была незначительной, импульс получился очень кратковременным, поэтому мощность разряда была невелика.

    Как устроен конденсатор

    Устройство конденсатора практически ничем не отличается от лейденской банки: все те же две обкладки, разделенные диэлектриком. Именно так на современных электрических схемах изображаются конденсаторы. На рисунке 1 показано схематичное устройство плоского конденсатора и формула для его расчета.

    Рисунок 1. Устройство плоского конденсатора

    Здесь S - площадь пластин в квадратных метрах, d - расстояние между пластинами в метрах, C - емкость в фарадах, ε - диэлектрическая проницаемость среды. Все величины, входящие в формулу, указаны в системе СИ. Эта формула справедлива для простейшего плоского конденсатора: можно просто расположить рядом две металлические пластины, от которых сделаны выводы. Диэлектриком может служить воздух.

    Из этой формулы можно понять, что емкость конденсатора тем больше, чем больше площадь пластин и чем меньше расстояние между ними. Для конденсаторов с другой геометрией формула может быть иной, например, для емкости одиночного проводника или . Но зависимость емкости от площади пластин и расстояния между ними та же, что и у плоского конденсатора: чем больше площадь и чем меньше расстояние, тем больше емкость.

    На самом деле пластины не всегда делаются плоскими. У многих конденсаторов, например металлобумажных, обкладки представляют собой алюминиевую фольгу свернутую вместе с бумажным диэлектриком в плотный клубок, по форме металлического корпуса.

    Для увеличения электрической прочности тонкая конденсаторная бумага пропитывается изолирующими составами, чаще всего трансформаторным маслом. Такая конструкция позволяет делать конденсаторы с емкостью до нескольких сотен микрофарад. Примерно так же устроены конденсаторы и с другими диэлектриками.

    Формула не содержит никаких ограничений на площадь пластин S и расстояние между пластинами d. Если предположить, что пластины можно развести очень далеко, и при этом площадь пластин сделать совсем незначительной, то какая-то емкость, пусть небольшая, все равно останется. Подобное рассуждение говорит о том, что даже просто два проводника, расположенные по соседству, обладают электрической емкостью.

    Этим обстоятельством широко пользуются в высокочастотной технике: в некоторых случаях конденсаторы делаются просто в виде дорожек печатного монтажа, а то и просто двух скрученных вместе проводков в полиэтиленовой изоляции. Обычный провод-лапша или кабель также обладают емкостью, причем с увеличением длины она увеличивается.

    Кроме емкости C, любой кабель обладает еще и сопротивлением R. Оба этих физических свойства распределены по длине кабеля, и при передаче импульсных сигналов работают как интегрирующая RC - цепочка, показанная на рисунке 2.

    Рисунок 2.

    На рисунке все просто: вот схема, вот входной сигнал, а вот он же на выходе. Импульс искажается до неузнаваемости, но это сделано специально, для чего и собрана схема. Пока же речь идет о влиянии емкости кабеля на импульсный сигнал. Вместо импульса на другом конце кабеля появится вот такой «колокол», а если импульс короткий, то он может и вовсе не дойти до другого конца кабеля, вовсе пропасть.

    Исторический факт

    Здесь вполне уместно вспомнить историю о том, как прокладывали трансатлантический кабель. Первая попытка в 1857 году потерпела неудачу: телеграфные точки - тире (прямоугольные импульсы) искажались так, что на другом конце линии длиной 4000 км разобрать ничего не удалось.

    Вторая попытка была предпринята в 1865 году. К этому времени английский физик У. Томпсон разработал теорию передачи данных по длинным линиям. В свете этой теории прокладка кабеля оказалась более удачной, сигналы принять удалось.

    За этот научный подвиг королева Виктория пожаловала ученого рыцарством и титулом лорда Кельвина. Именно так назывался небольшой город на побережье Ирландии, где начиналась прокладка кабеля. Но это просто к слову, а теперь вернемся к последней букве в формуле, а именно, к диэлектрической проницаемости среды ε.

    Немножко о диэлектриках

    Эта ε стоит в знаменателе формулы, следовательно, ее увеличение повлечет за собой возрастание емкости. Для большинства используемых диэлектриков, таких как воздух, лавсан, полиэтилен, фторопласт эта константа практически такая же, как у вакуума. Но вместе с тем существует много веществ, диэлектрическая проницаемость которых намного выше. Если воздушный конденсатор залить ацетоном или спиртом, то его емкость возрастет раз в 15…20.

    Но подобные вещества обладают кроме высокой ε еще и достаточно высокой проводимостью, поэтому такой конденсатор заряд держать будет плохо, он быстро разрядится сам через себя. Это вредное явление называется током утечки. Поэтому для диэлектриков разрабатываются специальные материалы, которые позволяют при высокой удельной емкости конденсаторов обеспечивать приемлемые токи утечки. Именно этим и объясняется такое разнообразие видов и типов конденсаторов, каждый из которых предназначен для конкретных условий.

    Наибольшей удельной емкостью (соотношение емкость / объем) обладают . Емкость «электролитов» достигает до 100 000 мкФ, рабочее напряжение до 600В. Такие конденсаторы работают хорошо только на низких частотах, чаще всего в фильтрах источников питания. Электролитические конденсаторы включаются с соблюдением полярности.

    Электродами в таких конденсаторах является тонкая пленка из оксида металлов, поэтому часто эти конденсаторы называют оксидными. Тонкий слой воздуха между такими электродами не очень надежный изолятор, поэтому между оксидными обкладками вводится слой электролита. Чаще всего это концентрированные растворы кислот или щелочей.

    На рисунке 3 показан один из таких конденсаторов.

    Рисунок 3. Электролитический конденсатор

    Чтобы оценить размеры конденсатора рядом с ним сфотографировался простой спичечный коробок. Кроме достаточно большой емкости на рисунке можно разглядеть еще и допуск в процентах: ни много ни мало 70% от номинальной.

    В те времена, когда компьютеры были большими и назывались ЭВМ, такие конденсаторы стояли в дисководах (по-современному HDD). Информационная емкость таких накопителей теперь может вызвать лишь улыбку: на двух дисках диаметром 350 мм хранилось 5 мегабайт информации, а само устройство весило 54 кг.

    Основным назначением показанных на рисунке суперконденсаторов был вывод магнитных головок из рабочей зоны диска при внезапном отключении электроэнергии. Такие конденсаторы могли хранить заряд несколько лет, что было проверено на практике.

    Чуть ниже с электролитическими конденсаторами будет предложено проделать несколько простых опытов, чтобы понять, что может делать конденсатор.

    Для работы в цепях переменного тока выпускаются неполярные электролитические конденсаторы, вот только достать их почему-то очень непросто. Чтобы как-то эту проблему обойти, обычные полярные «электролиты» включают встречно-последовательно: плюс-минус-минус-плюс.

    Если полярный электролитический конденсатор включить в цепь переменного тока, то сначала он будет греться, а потом раздастся взрыв. Отечественные старые конденсаторы разлетались во все стороны, импортные же имеют специальное приспособление, позволяющее избежать громких выстрелов. Это, как правило, либо крестовая насечка на донышке конденсатора, либо отверстие с резиновой пробкой, расположенное там же.

    Очень не любят электролитические конденсаторы повышенного напряжения, даже если полярность соблюдена. Поэтому никогда не надо ставить «электролиты» в цепь, где предвидится напряжение близкое к максимальному для данного конденсатора.

    Иногда в некоторых, даже солидных форумах, начинающие задают вопрос: «На схеме означен конденсатор 470µF * 16V, а у меня есть 470µF * 50V, можно ли его поставить?». Да, конечно можно, вот обратная замена недопустима.

    Конденсатор может накапливать энергию

    Разобраться с этим утверждением поможет простая схема, показанная на рисунке 4.

    Рисунок 4. Схема с конденсатором

    Главным действующим лицом этой схемы является электролитический конденсатор C достаточно большой емкости, чтобы процессы заряда - разряда протекали медленно, и даже очень наглядно. Это дает возможность наблюдать работу схемы визуально с помощью обычной лампочки от карманного фонаря. Фонари эти давно уступили место современным светодиодным, но лампочки для них продаются до сих пор. Поэтому, собрать схему и провести простые опыты очень даже просто.

    Может быть, кто-то скажет: «А зачем? Ведь и так все очевидно, да если еще и описание почитать…». Возразить тут, вроде, нечего, но любая, даже самая простая вещь остается в голове надолго, если ее понимание пришло через руки.

    Итак, схема собрана. Как она работает?

    В положении переключателя SA, показанном на схеме, конденсатор C заряжается от источника питания GB через резистор R по цепи: +GB __ R __ SA __ C __ -GB. Зарядный ток на схеме показан стрелкой с индексом iз. Процесс заряда конденсатора показан на рисунке 5.

    Рисунок 5. Процесс заряда конденсатора

    На рисунке видно, что напряжение на конденсаторе возрастает по кривой линии, в математике называемой экспонентой. Ток заряда прямо-таки зеркально отражает напряжение заряда. По мере того, как напряжение на конденсаторе растет, ток заряда становится все меньше. И только в начальный момент соответствует формуле, показанной на рисунке.

    Через некоторое время конденсатор зарядится от 0В до напряжения источника питания, в нашей схеме до 4,5В. Весь вопрос в том, как это время определить, сколько ждать, когда же конденсатор зарядится?

    Постоянная времени «тау» τ = R*C

    В этой формуле просто перемножаются сопротивление и емкость последовательно соединенных резистора и конденсатора. Если, не пренебрегая системой СИ, подставить сопротивление в Омах, емкость в Фарадах, то результат получится в секундах. Именно это время необходимо для того, чтобы конденсатор зарядился до 36,8% напряжения источника питания. Соответственно для заряда практически до 100% потребуется время 5* τ.

    Часто, пренебрегая системой СИ, подставляют в формулу сопротивление в Омах, а емкость в микрофарадах, тогда время получится в микросекундах. В нашем случае результат удобнее получить в секундах, для чего придется микросекунды просто умножить на миллион, а проще говоря, переместить запятую на шесть знаков влево.

    Для схемы, показанной на рисунке 4, при емкости конденсатора 2000мкФ и сопротивлении резистора 500Ω постоянная времени получится τ = R*C = 500 * 2000 = 1000000 микросекунд или ровно одна секунда. Таким образом, придется подождать приблизительно 5 секунд, пока конденсатор зарядится полностью.

    Если по истечении указанного времени переключатель SA перевести в правое положение, то конденсатор C разрядится через лампочку EL. В этот момент получится короткая вспышка, конденсатор разрядится и лампочка погаснет. Направление разряда конденсатора показано стрелкой с индексом iр. Время разряда также определяется постоянной времени τ. График разряда показан на рисунке 6.

    Рисунок 6. График разряда конденсатора

    Конденсатор не пропускает постоянный ток

    Убедиться в этом утверждении поможет еще более простая схема, показанная на рисунке 7.

    Рисунок 7. Схема с конденсатором в цепи постоянного тока

    Если замкнуть переключатель SA, то последует кратковременная вспышка лампочки, что свидетельствует о том, что конденсатор C зарядился через лампочку. Здесь же показан и график заряда: в момент замыкания переключателя ток максимальный, по мере заряда конденсатора уменьшается, а через некоторое время прекращается совсем.

    Если конденсатор хорошего качества, т.е. с малым током утечки (саморазряда) повторное замыкание выключателя к вспышке не приведет. Для получения еще одной вспышки конденсатор придется разрядить.

    Конденсатор в фильтрах питания

    Конденсатор ставится, как правило, после выпрямителя. Чаще всего выпрямители делаются двухполупериодными. Наиболее распространенные схемы выпрямителей показаны на рисунке 8.

    Рисунок 8. Схемы выпрямителей

    Однополупериодные выпрямители также применяются достаточно часто, как правило, в тех случаях, когда мощность нагрузки незначительна. Самым ценным качеством таких выпрямителей является простота: всего один диод и обмотка трансформатора.

    Для двухполупериодного выпрямителя емкость конденсатора фильтра можно рассчитать по формуле

    C = 1000000 * Po / 2*U*f*dU, где C емкость конденсатора мкФ, Po мощность нагрузки Вт, U напряжение на выходе выпрямителя В, f частота переменного напряжения Гц, dU амплитуда пульсаций В.

    Большое число в числителе 1000000 переводит емкость конденсатора из системных Фарад в микрофарады. Двойка в знаменателе представляет собой число полупериодов выпрямителя: для однополупериодного на ее месте появится единица

    C = 1000000 * Po / U*f*dU,

    а для трехфазного выпрямителя формула примет вид C = 1000000 * Po / 3*U*f*dU.

    Суперконденсатор - ионистор

    В последнее время появился новый класс электролитических конденсаторов, так называемый . По своим свойствам он похож на аккумулятор, правда, с несколькими ограничениями.

    Заряд ионистора до номинального напряжения происходит в течение короткого времени, буквально за несколько минут, поэтому его целесообразно использовать в качестве резервного источника питания. По сути ионистор прибор неполярный, единственное, чем определяется его полярность это зарядкой на заводе - изготовителе. Чтобы в дальнейшем эту полярность не перепутать она указывается знаком +.

    Большую роль играют условия эксплуатации ионисторов. При температуре 70˚C при напряжении 0,8 от номинального гарантированная долговечность не более 500 часов. Если же прибор будет работать при напряжении 0,6 от номинального, а температура не превысит 40 градусов, то исправная работа возможна в течение 40 000 часов и более.

    Наиболее распространенное применение ионистора это источники резервного питания. В основном это микросхемы памяти или электронные часы. В этом случае основным параметром ионистора является малый ток утечки, его саморазряд.

    Достаточно перспективным является использование ионисторов совместно с солнечными батареями. Здесь также сказывается некритичность к условию заряда и практически неограниченное число циклов заряд-разряд. Еще одно ценное свойство в том, что ионистор не нуждается в обслуживании.

    Пока получилось рассказать, как и где работают электролитические конденсаторы, причем, в основном в цепях постоянного тока. О работе конденсаторов в цепях переменного тока будет рассказано в другой статье - .